Conroy, C. J. 1998. (Ph.D, Biology)


The impetus for this dissertation was an interest in geographic variation in Microtus longicaudus with a particular focus on populations in the Alexander Archipelago of southeastern Alaska. To establish a framework for interpreting intraspecific variation in M. longicaudus, I examined the phylogenetics of 28 species of the genus Microtus, including all North American species (Chapters 2 and 4). That study, which corroborates a rapid pulse of diversification noted in the fossil record, necessitated a deeper phylogenetic perspective. Thus, a third objective of the dissertation was to investigate relationships among genera of arvicolines within the framework of other murid rodents. I examined variation in the mitochondrial cytochrome b and ND4 genes using maximum parsimony, distance, and maximum likelihood phylogenetic analyses. Relationships at several taxonomic levels appear intractable due to rapid accumulation and survival of genetic lineages. These rapid radiations were found among species, genera, and possibly subfamilies; however, strong support at these levels for other taxa (e.g., the monophyly of Microtus) suggests these genes have strong phylogenetic signal.

Many of the well-supported sister species pairs within Microtus (Chapters 2 and 4) had been previously identified based on morphologic or allozyme work (e.g., M. pennsylvanicus and M. montanus, M. pinetorum and M. quasiater). The sequence data supported a clade of taiga dwelling species in North America and a clade of eastern and central Asian species. The southernmost arvicoline species of Mexico and Guatemala, though previously suggested to be derived from a single ancient invasion, did not appear to be either ancient or monophyletic.

Within M. longicaudus, a large east-west phylogeographic break was detected that is equivalent in genetic distance to other sister species pairs in the genus. This break may indicate mid to late-Pleistocene differentiation (Chapter 3) within the genus. At higher latitudes, populations of M. longicaudus exhibited evidence of recent range expansion including absence of correlation between geographic and genetic structure; and pairwise mismatches among DNA sequences with a single peak and few differences.


  • Conroy, C. J., and J. A. Cook. 1999. MtDNA evidence for repeated pulses of speciation within arvicoline and murid rodents. Journal of Mammalian Evolution, 6:221-245.
  • Vapalahti, O., . Lundkvist, V. Fedorov, C. J. Conroy, S. Hirvonen, A. Plyusnina, K. Nemirov, K. Fredga, J. A. Cook, J. Niemimaa, A. Kaikusalo, H. Henttonen, A. Vaheri and A. Plyusnin. 1999. Isolation and characterization of a hantavirus from Lemmus sibiricus: evidence for host-switch during hantavirus evolution. Journal of Virology, 73(7):5586-5592.
  • Conroy, C. J., J. R. Demboski, and J. A. Cook. 1999. Mammalian biogeography of the Alexander Archipelago of Alaska: a north temperate nested fauna. Journal of Biogeography, 26(2):343-352.
  • Conroy, C. J. and J. A. Cook. 1998. Long-tailed vole (Microtus longicaudus). Pp. 93-95, in North American rodents: status survey and conservation action plan (D. J. Hafner, E. Yensen, and G. L. Kirkland, eds.). World Conservation Union (IUCN), Gland, Switzerland.
  • Conroy, C. J., Cook, J. A. and S. O. MacDonald. 1993. Discovery of black morph Peromyscus in Southeast Alaska. Peromyscus Newsletter, 15:30-31.
  • Conroy, C. J. and J. A. Cook. In Press. Microtus xanthognathus. Mammalian Species Account, American Society of Mammalogists, 628:1-5.
  • Conroy, C. J. and J. A. Cook. In Press. Molecular systematics of a holarctic rodent (Microtus: Muridae). Journal of Mammalogy, 81(2).
  • Conroy, C. J. and J. A. Cook. In Press. Phylogeography of Microtus longicaudus, a post-glacial invader. Molecular Ecology.